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The paper deals with steady laminar film flow which is set up at  the cylindrical 
surface of an idealized horizontal ‘road ’ when homogeneous ‘rain ’ is falling onto 
the road in a vertical downward direction. It is shown that a particular solution 
of the Navier-Stokes equations is possible for which the depth of the liquid film 
is constant. In  that case the Navier-Stokes equations reduce to the equations 
governing plane stagnation-point flow. However, the boundary conditions differ 
from those for the classical stagnation-point problem. Solutions for nearly 
inviscid flow and predominantly viscous flow are derived analytically. In  parti- 
cular, simple formulae for the depth of the film are found in both cases. Finally, 
the importance of the particular solution as a member of a whole class of solutions 
is discussed on the basis of a momentum integral approximation. 

1. Introduction 
In connexion with the investigation of the flow of rain-water over a curved 

road surface by Schleicher (1 975) the following idealized hydrodynamic problem 
arose (figure 1): over a rigid cylindrical surface (‘road surface’) with constant 
radius of curvature R and a horizontal axis, a liquid film of thickness h is flowing 
under the action of gravity. The flow is assumed laminar, two-dimensional and 
steady. The amount of liquid flowing in the film is continuously supplied by 
‘rain’, falling with constant velocity V in a vertical downward direction onto 
the surface of the film. The ‘rain’ is idealized as a homogeneous medium with 
density ep, where p is the density of the liquid in the film and E is a number 
between 0 and 1:0 < e < 1. In  applications to problems of real rain flow, E is 
of the order of hence the assumption e < 1 is justifiedin such cases. However, 
to keep the theory as general as possible, and with an eye on possible applications 
to artificial sprinkling for which E might be much larger, this assumption will not 
be made here. 

The main part of this paper is devoted to the derivation and discussion of a 
particular solution of the hydrodynamic equations for which the film thicknesa 
has the same value everywhere. In  5 2 the Navier-Stokes equations and boundary 
conditions are simplified by assuming constant film thickness. The resulting 
equations are those for plane stagnation-point flow. However, the boundary 
conditions to be satisfied at the film surface induce complications which are 
absent in classical stagnation-point flow. These boundary conditions are derived 
from a momentum balance at the film surface. The film surface, in a certain 
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FIGURE 1. Notation for film flow with constant depth h. 

sense, is analogous to an oblique shock wave in gasdynamics: the density of the 
medium on crossing the surface jumps from ep to p. The concomitant change in 
normal stress (essentially pressure) causes an augmentation of the ‘effective 
gravity’ driving the flow. Therefore, in all results, instead of the acceleration 
due to gravity g, an ‘effective’ acceleration due to gravity g* appears. 

In  $ 3 the equations for the liquid film are solved, for nearly inviscid flow, by 
matched asymptotic expansions. The flow field consists of a boundary layer (the 
classical stagnation-point boundary layer to a first approximation) near the 
wall and an inviscid flow near the surface of the film. The inviscid flow is rota- 
tional. The rotation is induced by the passage of the liquid through the free 
surface (see also Becker 1975). 

For predominantly viscous flow a solution is found in § 4 by a regular power- 
series expansion. The results obtained are of immediate relevance for rain flow 
on a road, because such flows are within the domain of validity of these results. 

In  $5, an approximate ‘hydraulic’ method, based on the momentum integral, 
is used to clarify the significance of the solution discussed so far, as a particular 
solution within a whole class of solutions. The discussion indicates that the 
particular solution is realized in most cases of practical importance for rain-water 
flow. 

Throughout $52-5 the thickness of the film is assumed so small that certain 
curvature terms in the undedying equations may be neglected. The justification 
of this neglect is discussed in $ 6 and a numerical example is given there. 

2. Statement of assumptions and derivation of equations 
An x, y co-ordinate system is introduced, as shown in figure 1, with u and v 

denoting the velocity components in the x and y directions, i.e. parallel and 
normal to the bounding wall. Assuming the thickness of the film h to be small 
compared with the radius of wall curvature R, we neglect curvature terms of the 
order hfR < 1 in the Navier-Stokes equations. An assessment of the limitations 
imposed by this neglect is presented in $6.  The Navier-Stokes equations then 
assume the form 

zc,+v, = 0, (2.1) 
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uu, + vuv = - p-lp, + g sin a + vAu, 

UV, + V V ~  = -p-'py - g cos 01 + VAV. 

(2.2) 

(2.3) 

We now define p* = p -pg/:  sin adx +pgy cos a. 

Taking account of daldx = I/R, we obtain from (2.4) 

and 

p: =p,-pgsina(I+y/R) 

p; = pv +pg cos a. 

In view of the assumption h/R < I ,  the term y/R is now omitted from (2.5). As 
a consequence (2.2) and (2.3) may be written as 

and 

In addition to these equations and (2.1) the flow has to satisfy boundary condi- 
tions at the rigid wall and at the free surface of the film. At the wall the no-slip 

(2.9) 
condition applies : 

u = v = O  for y=O. 

The conditions to be satisfied at  the surface of the film are derived from the 
balance of momentum at the surface (see alseBecker 1975; Bohme & Becker 
1972). As we shall restrict the following derivations to a particular solution for 
which the thickness his independent of x, the slope of the film surface is the same 
as that of the wall, and is given by the angle a. Since the mass flow rate of rain 
perpendicular to a unit area of the film surface is epV cos a, and since the tangen- 
tial velocity jumps from Vsina just above to u(h) just below the surface, the 
tangential stress component jumps by the amount 

T = epVCosa(Vsina-u(h)). (2.10) 

Because the region above the surface is free of stress, the expression (2.10) 
gives the tangential stress immediately below the surface of the film. Likewise, 
the balance of momentum in the direction normal to the surface yields for the 
normal stress immediately below the surface, provided the pressure level above 
the surface is chosen as zero, 

G- = -€p(l-€) V2cos2a. (2.11) 

(2.12) Now, for a Newtonian fluid, r = vp(u, + v,), 
and IT = -p+2vpvy, (2.13) 

where p denotes pressure. For the particular solution, to be derived presently, 
it so happens that v depends on y only [cf. equation (2.16)]. Therefore, com- 
bination of (2.12) with (2.10) leads to the following boundary condition: 

vu?, = sVcosa(Vsina-u) for y = h. (2.14) 

From (2.13) one infers that 

G- ,=  -p for y = h. (2.15) 
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For the solution of (2.7) and (2.8), subject to the boundary conditions (2.9) and 
(2.14), we now assume 

u = Xf'(Y), 21 = --f(Y)> (2.16) 

p* = -1 2P b2 ( ~2 + R ? d ) ,  (2.17) 

with constant b2. We note that (2.16) and (2.17) is the ansatz for plane stagnation- 
point flow (Schlichting 1965). By (2.16) the equation of continuity (2.1) is 
satisfied. The determination of the function f(y), together with the thickness ib 
of the film, is the main task of the subsequent calculations. 

The constant P i n  (2.17) can be derived from (2.11). On the one hand, differen- 
tiation of (2.11) and use of (2.15) yields 

--gX = p z  = -2p~(l--e)R-~V~sinacosa for y = h. (2.18) 

On the other hand, from (2.17) and (2.5) one obtains 

p z  = px - pg sin a = - pb2x. 

Combination of (2.18) and (2.19) leads to 

(2.19) 

b2z = g sin a( 1 + 2 4  1 - E )  V 2  cos a/gR). (2.20) 

This relation is satisfied with constant b2 if the values of a are restricted by the 
assumption that [a\ < 1, such that sina M x/R and cosa w 1. Then 

b2 = g*/R, (2.21) 

(2.22) 

where an 'effective' constant of gravity g* has been defined as 

g" = g + 2E( 1 - 8 )  V2/R. 

Insertion of (2.16) and (2.17) into (2.7) and (2.8) and use of (2.21) yields 

and 

f '2 - ff" = vfN' + g*/R, 

f f '  + vf" = F'g*/(2R). 

(2.23) 

(2.24) 

The boundary conditions (2.9) are transformed into 

f ( 0 )  = f ' ( O )  = 0. (2.25) 

The boundary condition (2.14), with cosa = 1 and sina = x/R, is transformed 

~f"(h) = EV( V / R  - f ' (h)) .  (2.26) into 

Finally, the balance of mass at  the surface of the film yields another boundary 
condition, namely v(h) = €7 cos a, which is equivalent to 

f ( h )  = EV. (2.27) 

Equations (2.23)-(2.27) constitute the final formulation of the problem to be 
solved. The derivation of these equations is based on the assumptions 

R = constant, h/R < 1, 1.1 < 1. (2.28) 

The stipulation that h be independent of x is not an additional assumption, 
because it will be satisfied exactly by the solution to be found. Since the pressure 
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distribution in the liquid film is of no particular concern, (2.24) will be omitted 
from now on. 

It is convenient to cast the equations into a dimensionless form. For that 
purpose the following definitions are appropriate : 

Re = (g*@ R/v  (Reynolds number), 

M = V/(g*R)* (Froude number), 

f (y)  = (g*R)* w(q)  with q = y/R. 

Equations (2.23) and (2.25)-(2.27) thereby assume the following form: 

wt2 - ww" = 1 +- wm/Re, 

w(0) = w'(0) = 0, 

w(K) = eM, 

w"(&) = sMRe(M-w'(&)).  

Here, the abbreviation i = h/R has been used. We note that 

w'(7) = (%*)*f'(y) = u(x ,  Y) /UO(X) .  

Here, ~ ~ ( 2 )  = (g*x2/R)* = (2g*~)4 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

is the velocity of free fall through a height x = x2/(2R),  which is the vertical 
distance between the highest point of the wall at  x = 0 and the wall at  x. 

It is to be noted that (2.32) is a third-order differential equation; the solution 
is subject to the four boundary conditions (2.33)-(2.35). This discrepancy be- 
tween the order of the equation and the number of boundary conditions causes 
no inconsistency because the dimensionless film thickness 6 is undetermined a 
priori and has to  be calculated, as a kind of eigenvalue, together with the 
solution w. 

3. Solution for nearly inviscid flow 
For sufficiently large values of the Reynolds number the flow in the iilm may 

be divided into a viscous boundary-layer flow near the wall (' inner flow ') and an 
inviscid flow near the film surface ('outer flow'). The outer solution of (2.32) is 
denoted by w ( ~ ) ,  and the following asymptotic expansion for Re -f co with E and 
M fixed is postulated: 

The film thickness 6 is expanded in the same way: 

wfa) = wo + Re-Bw, + Re-lw, + . . . . 

= 6, + Re-%, + Re-%, + . . . . 

(3.1) 

(3.2) 

Substituting (3.1) and (3.2) into (2.32) and the outer boundary conditions (2.34) 
and (2.35) and comparing like powers of Re-4 we obtain 

w;"ww,w;( = 1) (3.3) 

(3.4) 2w; w; - wow; - w1 WI, = 0, 
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wo(Ko) = EM, 

K,w;(rn,) + w1(K0) = 0, 

w;(Lo) = M ,  
Kl w;;(Ko) + u@,) = 0. 

The inner solution is assumed to have the form 

w(’) = Re-*#(c) = + Re-*$, + . . .). (3.9) 

Here 6 denotes a stretched co-ordinate: 

6 = q Re*. 

Substitution of (3.9) into (2.32) yields 

q5;z - (b0q5: = 1. + #:, 
#;+q5;q50-2$;$;+$l#; = 0. 

The inner boundary conditions (2.33) are equivalent to 

#,(O) = +A(O) = 0, n = 0,1, ... . 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

In  addition to satisfying the outer and inner boundary conditions respectively, 
the outer and inner solution have to match in an overlapping region of common 
validity. 

The zeroth-order outer solution (wo, KO), which satisfies, in addition to the 
outer boundary conditions (3.5) and (3.7), the condition wo(0) = 0, is given by 

(3.14) 

(3.15) 

where E ,  = sM(  1 - M2)-B. This is the inviscid solution of the present film flow 
problem. The flow is rotational, except for M = 1, when w; = 1; the curl of the 
velocity field is proportional to w;. The rotation is induced at  the free surface, 
where new liquid is continuously entrained. The solution (3.14) and (3.15) has 
already been found - in a different context - by Becker (1975). At the wall, 
7 = 0, (3.14) gives w; = 1. From (2.36) i t  then follows that the velocity at the 
wall is ~ ( x ,  0)  = uo(x) = (2g*x)*. Hence, in inviscid flow, the liquid a t  the wall 
acquires the velocity of free fall through the height x ,  a result which was to be 
expected. 

A solution of (3.11) and (3.13) which satisfies the additional boundary condi- 
tion &(m) = 1 is provided by the well-known classical solution for plane stag- 
nation-point flow. The solutions wo and #o match, as is shown by the following 
considerations. A ‘matching ’ co-ordinate s = 7 Re4 is defined such that 7 = s Re-2 
and 6 = s Re+$. At the present order of approximation the inner and outer solu- 
tions are given by 

= Re-*#,(sRe&) 
= Re-*(sRei - A + O(Re-i)), (3.16) 

w ( ~ )  = w,(sRe-*) 
= sRe-$+O(Re-2). (3.17) 
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FIGURE 2. Inviscid velocity parallel to the bounding wall for different values of Froude 

number M .  - - -, boundary-layer correction a t  the wall. 

Here, the expansions for fixed s (in the common domain of validity) and Re +- co 
have been indicated. The properties wo(0) = 0, wh(0) = 1 and &,(co) = 1 have 
been used; the number 

has the value 0.648 (see Schlichting 1965). It is easily seen that the first term of 
(3.16) matches the first term of (3.17). 

Figure 2 shows the inviscid velocity distribution wA(7). The co-ordinate 7 is 
normalized with the film thickness go, which is shown in figure 3. The correction 
of the inviscid velocity distribution due to the boundary layer at the wall is 
qualitatively indicated by the dotted line in figure 2. 

It should be noted that for M > 1 the values of (1-M2)*, sin(7/e1) and 
arccosM in (3.14) and (3.15) all become imaginary. Although the imaginary 
unit drops out of the results for wo and h,, in that case it is more convenient to 
change in these results simultaneously (1 - M2)* into ( M 2  - l)* and the trigono- 
metric functions into the corresponding hyperbolic functions. Incidentally, this 
remark (which also applies to (3.19) and (3.22)) shows that the inviscid solution 
ia uniquely determined only for M > 1, because the function Ar coshM in (3.15) 
has only one positive value for M > 1. The multivaluedness of arc cos M in 
(3.15) indicates the existence, for M < 1, of an infinite number of branches of 
the solution! Each of these solution branches is characterized by a certain 
number of adjacent layers of fluid with opposite flow directions (up and down 
the slope of the wall) alternating in the y direction. The classical stagnation- 
point boundary layer matches all these solutions. However, in what follows it 
is always tacitly assumed that the simple one-layer solution with a unique flow 
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FIGURE 3. Film thickness for inviscid flow. 
-, io /e ;  - - -, fl,/eM. 

direction down the slope of the wall has been chosen; all diagrams are based on 
this assumption. This means that the lowest positive value of arc coa M has to 
be selected in (3.15). Only this solution has a continuous extefision to the case 
when M > I (see, for example, figure 3). 

A two-term matching of the inner and outer solutions can be effected by pro- 
ceeding to the outer solution of next order wl. It is easily verified that 

w1 = Aw; (3.18) 

with constant A is a solution of (3.4). The constant A is connected with the first- 
order correction fl, to the film thickness. By substituting (3.18) into the boundary 
conditions (3.6) and (3.8) one can see that both conditions are satisfied if 

R,  = - A .  

Therefore, the next approximation to the outer solution is 

w ( ~ )  = el sin (y/el) - 6, Re-4 cos (q /q ) .  (3.19) 

Introduction of the matching co-ordinate s and expansion for fixed s and Re+ co 
leads to 

w(a) = $Re-4 - h, Re-4 + O(Re-3). (3.20) 

This matches the first two terms of (3.16) if 

K, = A = 0.648, (3.21) 

or f l  = el arc cos M + 0.648 Re-4. (3.22) 

The augmentation of the inviscid film thickness k,, given by the second term on 
the right-hand side of (3.22), is easily interpreted by noting that this term is 
the displacement thickness of the classical stagnation-point boundary layer, as 
determined by & This is a rather obvious result. 
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In order to improve on these results, one would have to solve (3.12) for 
This is not possible without numerical integration. In  view of the fact that the 
nearly inviscid flow is less important for applications, for example to the flow 
of rain-water on a road surface, than the predominantly viscous flow, we desist 
from such calculations and turn to an approximate solution for the case in which 
viscosity plays the dominant role. 

306 

4. Solution for predominantly viscous flow 

parameter A, defined by 

The solution method explained in the preceding section certainly breaks down 
if the second term on the right-hand side of (3.22) is of the same order of magni- 
tude or larger than the first term. Figure 3 shows that for 0 < M 5 3 the func- 
tion (1 -X2)-* arc cos M is of order 1. Therefore, the condition that the two 
terms in (3.22) are of the same order of magnitude means, for moderate values 
of M ,  that the parameter h is of order 1. Hence we conclude that the results of 
5 3 are valid only if h 

We now study the solution in the limit h -+ 0, for M fixed. In this case viscosity 
is dominant over the whole depth of the film. Equations (3.32)-(3.35) are trans- 
formed by putting 

The transformed equations are 

For the following discussion it is convenient to introduce a new dimensionless 

h = eMRe4 = eV(R/g*v2)*. (4.1) 

I .  

w = Re-*$(S), 5 = qRe4. (4.2) 

(4.3) 6 ' 2  - $$y = 1 + $"I, 

Here 

We note that dw/dq = d$/dc; therefore $' is the dimensionless velocity distri- 
bution as explained in connexion with (2.36). 

The solution for [ = f (A ,  M )  is now sought, for small A, in form of an expan- 
sion in powers of A. The problem posed by (4.3)-(4.6) has the property that for 
h + 0 the dimensionless film thickness [ also tends to zero: [-+ 0. Therefore, the 
f3st terms of the power-series expansion of $ with respect to 5 are sufficient to 
find the first terms of the expansion of 6 as a function of A: 

By starting the expansion with the term a2S2 we have already satisfied tho 
conditions (4.4). Substitution of (4.8) into (4.3) and comparing like powers of 5 
shows that all coefficients an, n 2 3, can be related to the first coefficient a2 = a. 

PO PLM 74 
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FIGURE 4. Function H ( h ,  M ) ,  defined in equation (4.16). 

In  fact, straightforward algebra yields 

c3 c5 C6 5' $ = aC2--+a2--a-+-+... . 
6 30 180 2520 (4.9) 

This is now substituted into the boundary conditions (4.5) and (4.6), which then 
acquire the following form : 

(4.10) 
[3 [5 [6 [7 

a[2--+a2--aP+- +... = A, 
6 30 180 2520 

p c 4  [5 p 
2a-[+&~[~-a-+-+ - c4 c? ...= h M-2a[+--a2-+a--- 2 6 30 360 +...). (4.11) 

6 60 

These two equations can be solved by assuming the following expansions for a 
and 5: 

a = (3h)+ (4 + a1(3h)* + a2(3h)4 + . . .}, (4.12) 

1 = (3h)*{l +,81(3h)3+p2(3h)a+ ...}. (4.13) 

Substitution of (4.12) and (4.13) into (4.10) and (4.11) and comparison of like 
powers of 3h leads to the following result: 

M 2  107 -+- (3h)4+ ... , 
(36  840) ] (4.14) 

(4.15) 

These expansions are correct up to the order explicitly written down. 
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FIGURE 5. Velocity distribution parallel to the wall for 3h = 0.1 
and different values of Froude number M .  
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uluo 
FIGURE 6. Velocity distribution for 3A = 0.4 and different values of M (solid curves). 

For comparison the velocity for 3h = 0.1 and M = 3 is also shown (dashed curve). 
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FIGURE 7. Velocity distribution for 3h = 0-4 and different values of M (solid curves). 
Location of film surface is also shown (dashed curve). 

20-2 
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FIUURE 8. Dimensionless f2m thickness g &B a function of A. 
, results of numerical calculations for M = 1. 

The most important of these results is the expression (4.14) for the dimension- 
less film thickness. In  dimensional terms this result is 

h = (3RucV/g*)*H(h, M ) ,  (4.16) 

where H(h,  M )  is the function in curly brackets on the right-hand side of (4.14); 
see figure 4. 

Figures 5-7 show velocity profiles for different values of h and M .  In  figures 5 
and 6 the ordinate 6 has been normalized with the dimensionless film thickness c, 
so that = y//h = 1 denotes the film surface for all velocity profiles. In  figure 7 
the dashed line connects the end points of the velocity profiles at the free surface, 
6 = {. Finally, figure 8 shows the dimensionless thickness of the film g as a 
function of h for three values of the Froude number M .  The curved lines starting 
at the origin have been calculated from (4.13), whereas the straight lines are the 
results from (3.22). Obviously, these two results taken together provide already 
a good picture of the dependence of { on h within the whole range of h from zero 
to infinity. Also shown in figure 8 are the results of purely numerical calculations 
for M = 1; these results are denoted by dots. 

It is interesting, though rather obvious, to note that by restricting the expan- 
sions (4.8), (4.12) and (4.13) to the lowest-order term in h respectively one 
obtains 

r f  = &-p. (4.17) 

This velocity profile is parabolic, and it satisfies the equation qS" + 1 = 0, which 
follows from (4.3) by neglect of the inertia terms on the left-hand side. Further- 
more, (4.17) satisfies the boundary conditions (4.4) and ( 4 4 ,  whereas the rela- 
tion f(g) = 0 is satisfied instead of (4.6). The latter relation is the condition 
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for zero shear stress at  the surface of the film ! This shows that to a first approxi- 
mation neither the inertia terms in the Navier-Stokes equations nor the shear 
stress induced by the momentum of the rain at the free surface play a role. In  
this approximation the flow is ordinary creeping flow with a parabolic profile of 
the velocity parallel to the wall. This velocity increases in the x direction in such 
a way (i.e. in proportion to x) that the total volume of rain falling onto the surface 
ofthe film is transported downstream in the film. Incidentally, the independence 
of the &&-order solution of the shear stress induced at the free surface indicates 
that slight deviations of the direction of rainfall from the vertical have no effect 
on the first-order solution. 

Surprisingly, the second-order solution (i.e. the first two terms in (4.15) and 
(4.16)) still satisfies the equation @“+1 = 0. Therefore, in the second-order 
approximation, only the shear stress induced at the film surface by the momen- 
tum of the rain has an influence on the solution, whereas the inertia terms in the 
Navier-Stokes equations are still without influence. Only in the third-order 
solution do the inertia terms play a role ! 

5. Applicability of the particular solution 
As mentioned in the introduction, the problem treated here arose from a study 

of rain-water flow over a curved road surface (cf. Schleicher 1975, where much of 
the literature on experimental and theoretical studies based on hydraulic engi- 
neering type approximations is cited and surveyed). Therefore, the question 
arises as to what bearing on rain-water flow the particular solution (h indepen- 
dent of x !) discussed so far may possess. Of course, in order to apply that solution 
at all, one has to abstract from complicating details, like the effects of finite 
droplet size, surface roughness of the road, instability and wave formation, or 
even turbulence. The comparison of experimental and semi-theoretical results 
by Schleicher (1975), Shen & Li (1973) and Yoon & Wenzel(l971) seems to show 
that such effects are not very important in many rain flows of practical relevance. 
However, apart from these considerations, one has to acknowledge the fact that, 
for given e and V ,  many more solutions of the Navier-Stokes equations are 
certainly possible which satisfy the boundary conditions of our problem, but 
which do not satisfy the assumptions (2.16) and (2.17) which led to the particular 
solution. Which of these (infinitely) many possible solutions is selected by nature ? 
A tentative answer to this question will be provided by the discussion in this 
section. The discussion is based on an integral momentum method (see also 
Schleicher 1975; Yen & Wenzel 1970). 

In order to derive the basic momentum equation (5.9) we simplify (2.2) by 
assuming IuZZl Q luyyl (hydraulic boundary-layer approximation) : 

uu, + uuV = -p,/p -k g sin a! -/- yuyy. (5.1) 

Furthermore, in line with this simplification, a hydrostatic pressure distribution 
in the y direction is assumed: 
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FIGURE 9. Notation for film flow with variable depth h. 

Here, po is again the pressure immediately below the surface of the film. Since 
in the general case, studied in this section, h is not independent of x, the surface 
inclination to the horizontal direction ,I3 (see figure 9) is not equal to a. Therefore, 
the pressure po is given by the expression (2.11) for - c, with p substituted for a 
(viscous normal stresses are neglected in boundary-layer approximation) : 

po = ps( 1 - s) V2 cos2p. 

sin ,I3 M sin a - dh/dx, 

(5.3) 

(5.4) 

With 1.1 < 1 and Idh/dxl < 1, we may assume 

cosp NN cosa x 1. 

Then, a simple calculation shows that 

(5.5) 

-p,,/p+gsina = g* (sina-dhldx). (5-6) 

In  (5.6) terms of the order h/R and h/R* have been neglected; R* denotes the 
radius of curvature of the surface of the film: R* = (dp/dx)-l. Equation (5.1) 
assumes the form 

uuz + vuy = g* (sin a - dh/dx) + vuyy. (5.7) 

By integrating this equation over y from 0 to h, and by taking account of the 
equation of global continuity (equivalent to (2.27)), namely 

johudy = sV cosadx NN sVx, 1: 
the following momentum equation is derived: 

dh 
u2dy = g*h (sin a - &) + s Vu(h) + v % aY /. 0 (5.9) 

From (5.9) a differential equation for the film thickness h(x) is deduced by 
assuming the velocity profile u(x, y) to be of the form 

U(Z,Y) = (38Vx/h) (y/h-y2/2A2). (6.10) 
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FIUURE 10. Solutions of equation (5.12) in the 2, h plane (schematic). - - -, critical curve 
according to equation (5.15) ; -.-, hydraulic jump. 

This profile, which is identical to (4.17), satisfies the no-slip condition at the wall 
and the condition of global continuity, relation (5.8). It does not satisfy the 
shear-stress condition at the free surface. Indeed, at  the free surface, (5.10) gives 
au/ay = 0, which is equivalent to zero shear stress. However, since it was shown 
in $ 4  that the free-surface condition affects the solution only for values of h not 
too small, (5.10) may be regarded as an acceptable approximation at least for 
small values of A. In  order to simplify the calculations we furthermore assume 
that 

S V h / V  < 1 (5.11) 

and neglect terms of order ~ V h / v  against 1. Substitution of (5.10) into (5.9) then 
yields 

dh/dx = sin a (1 - h$/h3)/( 1 - h$x2/h34) ,  (5.12) 

where h, = (3v€vB/g*)*, (5.13) 

and X, = ( ~ R v / ~ s V ) * .  (5.14) 

As comparison with (4.16) shows, h, is the film thickness, in the approximation 
valid for small values of A, for the particular solution discussed previously. 
Obviously, h I h, is a particular solution of (5.12), as was to be expected. 

The complete set of solutions of (5.12) can be discussed easily in a qualitative 
way by first noting that x = x,, h = h, is a singular point in the x, h plane (figure 
10). It is a saddle point with two solutions passing through the point, one of 
them being the particular solution h EZ h,. The denominator of the right-hand 
side of (5.12) vanishes on the curve 

h/h, = (X/X,)+. (5.15) 
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FIGURE 11. Solutions of equation (6.12) with horizontal asymptote of free surface 
(schematic). 

This curve is shown in figure 10 as the dotted line. A brief calculation shows that 
vanishing of the denominator in (5.12) is equivalent to  

(5.16) 

The left-hand side of (5.16) is the square of an effective local Froude number, 
defined with the local film thickness as the characteristic length and the mean- 
square velocity in the film as the characteristic velocity. Taking into account 
the different signs of numerator and denominator in the different areas of the x, 
h plane bounded by the curve (5.15) and the solution h E h,, one can easily 
confirm the qualitative nature of the solutions of (5.12), as shown in figure 10. 

If the road has a breadth 1 from its centre to its edge, larger than x,, and if 
the flow is not obstructed at the edge, the solution is everywhere given by the 
particular solution h = h,. The flow is subcritical (effective local Froude number 
< 1) for x < xo and supercritical for x > x,. If 1 < x, and if the edge of the road 
is unobstructed, so that the water leaves the road in a free overfall at the edge, 
the local Froude number should reach the value 1 in the immediate vicinity of 
the edge (see Schleicher 1975). In  that case a solution from the lower left- 
hand domain of the x,h plane will be realized, which reaches the critical 
value 1 of the local Froude number a t  the edge of the road (with a vertical 
tangent, which of course is unrealistic and due to the simplifying assumptions 
made in the hydraulic approximation). However, for realistic values of road 
curvature (R = O(102m)) and rain properties ( E  = 0(10-6) ,  V = 0(10m/s)), these 
solutions differ appreciably from the particular solution only in the immediate 
vicinity of the edge of the road, whereas they coincide nearly exactly with the 
particular solution over most of the breadth of the road. Therefore, the particular 
solution discussed in the previous chapters is for all practical purposes the solu- 
tion also in that case. 

Equation (5.12) shows that dh/dx+ sin a as h/h,-+ 00. Therefore, in the upper 
half of the x, h plane the slope of all solutions tends to sin a, which means that the 
film surface becomes horizontal. This type of solution is sketched in figure 11. 
Also, solutions with a hydraulic jump a t  a position x > xo are possible. Such a 
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jump is indicated in figure 10 by a dash-dot line, and the physical properties of 
the solution should be clear from figure 11. For a further discussion the reader 
should consult the paper by Schleicher (1975). Though this paper is concerned 
with the case of a road with constant inclination a (‘roof-top’), the manifold of 
solutions is quite similar to the one studied here. 

Concluding this section, we note that the remarks made a t  the end of $4 
about the effects of the inertia terms in the Navier-Stokes equations and the 
shear stress induced a t  the film surface show the way to a simple first-order 
approximation for rain-water films. This approximation is valid also if the 
curvature ofthe wall is not constant. The approximation is based on the equation 

vuyv + g sin a = 0, (5.17) 

which is derived from (5.7) by neglecting the inertia, terms and the term dh/dx 
and by identifying g* with g, which is justified for natural rain, for which s < 1. 
Integrating (5.17) twice withrespect toy, applying the no-slip condition (u(0) = 0 )  
and the condition of vanishing shear stress at the film surface (au/ay = 0 for 
y = h),  one obtains 

u = (g sin a/v) (hy - iy2). (5.18) 

Inserting this result into the exact form of the global continuity condition (5.8) 
finally leads to 

h3 = (3sv V/g sin a) cos a dx. 
/ox 

(5.19) 

For sin a = x/R and cos a M 1 the result h = ho (with g* = g )  is recovered from 
(5.19); in that case (5.18) reduces to (5.10). However, (5.19) is valid for general 
variation of a with x,  even if a no longer satisfies the condition 1.1 Q 1 ! Of course, 
the preceding discussion makes it clear that the approximations made have led 
to a particular solution only. For other possible solutions, as sketched in figure 11, 
neither dh/dx nor the inertia terms may be neglected. 

6. Limitations imposed by the neglect of curvature terms 
In  order to get some feeling for the orders of magnitude of different quantities 

discussed in the previous sections, some numbers for a typical example of the 
flow of rain-water over a road surface may be useful. The radius of curvature of 
the road is taken as R = 50 m. For moderate to heavy rainfall the assumptions 
6 = 10-6 and V = 5 m/s are appropriate. The kinematic viscosity of water is 
v = m2/s and the effective constant of gravity is g* M g = 10 m/s2. These 
values give M = 0-224, Re = 1.12 x lo9 and h = 0.0075; obviously, the theory of 
$ 4 is applicable, and the depth of the film is given, to a very good approximation, 
by h, = 0.42 x 10-3 m; furthermore, xo = 5 m. The neglected curvature terms 
are of the order of h,/R = 8-4 x 10-6. The parameter e Vh/v has the value 2.1 x 

Generally, in the domain of validity of the theory presented in $4, i.e. for 
h -g 1, curvature terms should be negligible as long as h/R = CXe-4 Q 1 [cf. 
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(4.7)]. A n  approximation to [is given by ( 3 4 4  [cf. (4.13)]. Therefore, neglect of 
curvature terms is justified if (3h)4Re-4 < 1, or 

A < Re#. (6.1) 

Since h < 1, this condition is satisfied if Re 2 1. 
In  the domain of validity of the theory of $3, i.e. for A S 1, a f i s t  approxima- 

tion to h/R = is given by go [cf. (3.15)]. Figure 9 shows that in a rough approxi- 
mation for M 5 3 one can assume 6, z E M .  Therefore, the neglect of curvature 
terms is now justified if 

Neglect of the curvature term of order s2M2 compared with the second term on 
the right-hand side of (3.22) is justified if e2M2 < Re-*, or 

EM< 1. (6.2) 

EMA < 1. (6.3) 

Therefore, validity of (3.22) is guaranteed only if besides h 1, the relation (6.3) 
is satisfied. This means that eM has to be smaller by at least an order of magni- 
tude than l/h. For example, in the numerical example mentioned above, in- 
creasing 6 from (which is unrealistic for natural rain) without 
changing V, R and v increases h to 37.5 without changing M and Re. Then the 
conditions A 9 1 and eMA < 1 are satisfied simultaneously. 

to 5 x 

7. Concluding remarks 
The problem treated in the previous sections admits a number of generaliza- 

tions and corollaries. For example, the theory can be applied nearly without 
change to flow over a spherical surface with radius R. The governing equations, 
in that case, are those for rotationally symmetric stagnation-point flow with 
appropriate boundary conditions. Instead of the result (3.15) one now has the 
simple formula 

and instead of (4.16), 

with B(0, M )  = 1. 
A possible generalization of rain flow over a cylindrical road surface with 

horizontal axis is the extension to  the case of a road which is inclined to the 
horizontal direction (an ascending or descending road). The results obtained 
previously are still valid for the transverse flow of rain-water. In  addition to 
that flow, a flow in direction of the road itself is established, which is driven by 
gravity and is governed by simple linear equations. Because of this linearity it 
is easy to calculate that flow. A further complication which is easily taken ac- 
count of is obliqueness of the rainfall with respect to the direction of the axis of 
the cylindrical road. Also in that case our previous results for the transverse 
flow remain unchanged, and an additional flow in the direction of the road is 
set up. The additional flow is now driven by the momentum of the rain in the 
direction of the axis of the road. Again, the additional flow is governed by linear 
equations, and hence is easily calculated. 

KO = EM/( 1 + M ) ,  (7.1) 

h, = (3R~~V/2g*)i l?(h,  M ) ,  (7.2) 
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Finally, it  should be mentioned that the rain-flow problem has some similarities 
to the flow generated by film condensation (Beckett & Poots 1975; Cheng 1961). 
Here, the condensing vapour is a source of liquid at the surface of the film. In  
the simplest case the film is again driven by gravity. However, different boundary 
conditions at the film surface preclude too close an analogy with the rain flow 
studied here. 

A last remark is in order. As already mentioned in $5, real rain-water films 
differ in many respects from the idealized solution studied here. Particularly, 
finite drop size might have some effects worthy of study, including premature 
onset of turbulence (see Yoon & Wenzel 1971). Yet, a prerequisite for a quanti- 
tative assessment of such effects is the availability of a simple idealized but exact 
solution of the basic equations which can be compared with experimental results. 
Previous efforts in that direction suffer from a lack of such solutions and are 
based on approximate methods or global momentum considerations. The parti- 
cular solution found above provides a simple solution that avoids approxima- 
tions as far as possible. This, it  is hoped, justifies its presentation. 

REFERENCES 

BECKER, E. 1975 Mech. Res. Comm. 2, 149-154. 
BECKETT, P. M. & POOTS, G. 1975 Mech. Res. Comm. 2, 61-66. 
BOHME, G. & BECKER, E. 1972 J .  AppZ. Math. PhyK (2. angew. Math. Phya.) 23,983-990. 
CHENG, M .  M .  1961 A.S.M.E. J .  Heat Transfer, 83, 55-60. 
SCHLEICHER, U. 1975 Regenwasserfilme auf schwach geneigten Fliichen. Dissertation, 

Darmstadt D 17. 
SCHLICHTING, H. 1965 Cfrenzschichttheorie, 5th edn, Karlsruhe : G. Braun. 
SEEN, H. W. & LI, R. M. 1973 A.S.C.E. J .  Hydr. Div. 99, 771-791. 
YEN, B. C. & WENZEL, H. G. 1970 A.S.C.E. J .  Hydr. Div. 96, 801-814. 
YOON, Y .  N. & WENZEL, H .  G. 1971 A.S.C.E. J .  Hydr. Div. 97, 1367-1386. 


